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1 Introduction

The Moment Generating Function (MGF) provides a comprehensive summary of a random
variable’s distribution through its moments. In this paper, we will explore MGFs in different
discrete and continuous distributions in the univariate and multivariate cases. Then, we will
use the differentiation of the MGF from the definition to find the expected value and variance.
In addition, we will introduce the important properties and theorems with their proofs of
MGFs and show how to apply them in different scenarios of distribution theory.

2 Univariate Case

Moving into the univariate case, we begin by defining Moment Generating Functions (MGFs),
essential for understanding their impact on statistical analysis and distribution theory. This
foundational step is critical for later discussions on their properties and applications.

2.1 Definition

The moment generating function (MGF) of a random variable X is defined as

MX(t) = E[etX ] (1)

where E denotes the expected value, and t is a real number within the domain where the
MGF exists. This function generates the moments of the probability distribution of X by
differentiating MX(t) with respect to t and evaluating at t = 0.

2.2 MGFs for Discrete Random Variables

When X is a discrete random variable, its MGF is derived from its p(x) which is probability
mass function (pmf) as:
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MX(t) =
∑
x

etxp(x) (2)

The MGF of discrete random variables is the summation from the range of random variables
of the exponential function of the variable, multiplied by its probability mass function. Let’s
find the MGFs for the discrete distributions of Binomial and Poisson.

2.2.1 MGF of Binomial Distribution

If X follows a Binomial distribution with a total number of n and probability of p such as
X ∼ b(n, p) where probability mass function of X is P (X = x) =

(
n
x

)
· px(1− p)n−x, where x

= 0,1,...,n The MGF of X is:
MX(t) = E(etx)

MX(t) =
∑
x

etxp(x)

MX(t) =
n∑

x=0

etx
(
n

x

)
· px(1− p)n−x

MX(t) =
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x

By using the binomial theorem (a+ b)n =
(
n
x

)
· pk(1− p)n−k Let a = pet and b = 1− p

MX(t) = (pet + 1− p)n

Thus, the MGF of random variables X distributed in the Binomial distribution is MX(t) =
(pet + 1− p)n.

2.2.2 MGF of Poisson Distribution

If X follows a Poisson distribution with a parameter λ where probability mass function of
X is P (X = x) = λxe−λ

x!
where x = 0,1,... The MGF of X is:

MX(t) = E[etx]

MX(t) =
∑
x

etxp(x)

MX(t) =
∞∑
x=0

etx
λxe−λ

x!

MX(t) = e−λ

∞∑
x=0

(λet)x

x!
= e−λeλe

t

= eλ(e
t−1)

Thus, the MGF of random variables X distributed in the Poisson distribution is MX(t) =
eλ(e

t−1).
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2.3 MGFs for Continuous Random Variables

For a continuous random variable X, the MGF is determined using its f(x) which is the
probability density function (pdf) as:

MX(t) =

∫ ∞

−∞
etxf(x)dx (3)

The MGF of continuous random variables is the integral of the exponential function of
the variable, multiplied by its probability density function. Let’s find the MGFs for the
continuous distributions of Gamma, Exponential, and Normal. In addition, we can find the
central and noncentral Chi-Square distribution by MGFs. Let’s take a look.

2.3.1 MGF of a Gamma Distribution

If continuous random variables X follows the Gamma distribution, X ∼ Γ(α, β), and the

probability density function of X is f(x) = xα−1e
− x

β

Γ(α)βα , x > 0, α > 0, β > 0, where Γ(α) is the

gamma function defined as Γ(α) =
∫∞
0
xα−1e−x dx. Find the moment-generating function of

X

MX(t) = E[etx] =

∫
x

etxf(x) dx

MX(t) =

∫ ∞

0

etx
xα−1e−

x
β

Γ(α)βα
dx

MX(t) =

∫ ∞

0

xα−1e−x( 1
β
−t)

Γ(α)βα
dx

Use the transformation y = x
(

1
β
− t

)
to get

MX(t) = (1− βt)−α

Thus, the MGF of X which follows the Gamma distribution is (1− βt)−α.

2.3.2 MGF of Exponential Distribution

If continuous random variable X follows the exponential distribution, X ∼ exp(λ) and the
probability density function of X is f(x) = λe−λx. x ≥ 0, λ > 0. The MGF of X is shown as:

MX(t) = E[etX ] =

∫ ∞

0

etxf(x) dx.

MX(t) =

∫ ∞

0

etxλe−λx dx = λ

∫ ∞

0

e−x(λ−t) dx.

This integral converges for t < λ, and evaluating it, we find

MX(t) =
λ

λ− t
= [

λ

λ
− t

λ
]−1 = (1− t

λ
)−1

Thus, the MGF of X is MX(t) = (1 − t
λ
)−1, which is a special case of Γ(α, β) with α = 1

and β = 1
λ
.
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2.3.3 MGF of a Normal Distribution

Now, consider X having a normal distribution denoted as X ∼ N (µ, σ2) with the probability

density function of X is f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . The MGF of X is shown:

MX(t) =

∫ ∞

−∞
etx

1√
2πσ2

e−
(x−µ)2

2σ2 dx

= eµt+
1
2
σ2t2

∫ ∞

−∞

1√
2πσ2

e−
(x−(µ+σ2t))2

2σ2 dx

= eµt+
1
2
σ2t2

This simplification shows that the MGF of a normal distribution is eµt+
1
2
σ2t2 .

2.3.4 MGF of Chi-Square Distribution

Central Chi-Square
Let Z1, Z2, . . . , Zn be independent random variables with Zi ∼ N(0, 1). If Y =

∑n
i=1 Z

2
i then

Y follows the chi-square distribution with n degrees of freedom. We write Y ∼ χ2
n.

Proof:
Find the moment generating function of Y . Since Z1, Z2, . . . , Zn are independent,

MY (t) =MZ2
1
(t)×MZ2

2
(t)× . . .×MZ2

n
(t)

Each Z2
i follows χ2

1 and therefore it has MGF equal to (1− 2t)−
1
2 . Conclusion:

MY (t) = (1− 2t)−
n
2 .

This is the MGF of Γ
(
n
2
, 2
)
, and it is called the chi-square distribution with n degrees of

freedom. Its pdf is f(y) = y
n
2 −1e−

y
2

Γ(n
2 )2

n
2
.

Noncentral Chi-Square
Let Y1, . . . , Yn be independent random variables with Yi ∼ N(µi, σ

2), i = 1, . . . , n. If each

µi = 0 then Q =
∑n

i=1 Y
2
i

σ2 ∼ χ2
n. What if each µi ̸= 0?

The moment generating function of Q =
∑n

i=1 Y
2
i

σ2 is given by:

MQ(t) = (1− 2t)−
n
2 exp

(
t
∑n

i=1 µ
2
i

σ2(1− 2t)

)
.

In general, a random variable Q that has an MGF of the form

MQ(t) = (1− 2t)−
n
2 exp

(
θt

1− 2t

)
follows the χ2 distribution with noncentrality parameter θ. We write Q ∼ χ2(n, θ). There-
fore,

Q =

∑n
i=1 Y

2
i

σ2
∼ χ2

(
n,

∑n
i=1 µ

2
i

σ2

)
.

Note: If the noncentrality parameter is zero then Q ∼ χ2
n (central χ2).
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2.4 Find Expected Value and Variance by MGFs

To find the kth moment simply evaluate the kth derivative of the MX(t) at t = 0

E[Xk] = [MX(t)]
kthderivative
t=0 (4)

First moment:

MX(t)
′ =

∑
x

xp(x) +
2t

2!

∑
x

x2p(x) + · · ·

Let t = 0, we see that E(X) = MX(0)
′ =

∑
x xp(x)

Similarly, to find a second moment

MX(t)
′′ =

∑
x

x2p(x) +
6t

3!

∑
x

x3p(x) + · · ·

Let t = 0, we see that E(X2) = MX(0)
′′ =

∑
x x

2p(x) Or from direct differentiation of the
MGF from the definition and evaluate the derivatives at t = 0. Also note that MX(0) = 1

MX(t) = E[etX ]

MX(t)
′ =

∂

∂t
MX(t) = E[etx]|t=0 = E(X)

MX(t)
′′ =

∂2

∂t2
MX(t) = E[x2etx]|t=0 = E(X2)

Based on what we got above we can simply got Var(X) by E(X2)− (E(X))2

2.5 Corollary

Instead of differentiating MX(t) we can differentiate ln[MX(t)] and evaluate the first and
second derivatives at t=0. This will give E[X] and Var[X]

Ψ(t) = ln[MX(t)]

Ψ′(t) =
M ′

X(t)

MX(t)

∣∣∣∣
t=0

=
M ′

X(0)

MX(0)
= E(X)

Ψ′′(t) =
M ′′

X(t) ·MX(t)− [M ′
X(t)]

2

[MX(t)]2

∣∣∣∣
t=0

= E(X2)− [E(X)]2 = Var(X)

2.6 Properties of MGFs

Now, we can explore the properties of MGFs. There are three important properties of MGFs,
let’s take a look:

1. If the random variable X plus a constant term a, the moment generating function of
(X+a) is denoted as

MX+a(t) = E(et(X+a)) = E(eat) + E(etX) = eatMX(t) (5)
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2. If the random variable X multiplies a constant term b, then the moment-generating
function of (bX) would be

MbX(t) = E(etbX) = E(e(tb)X) =MX(tb) (6)

3. If the random variable X plus and a constant term a and divided by a constant term
b, the moment-generating function of (X+a

b
) would be

MX+a
b
(t) = E(et(

X+a
b

)) = e(
a
b
t)MX(

t

b
) (7)

2.7 Theorems of MGFs

There are two important theorems of MGFs which are about Uniqueness and Independence.
Let’s take a look at each theorem and its proof.

2.7.1 Uniqueness Theorems

If X and Y are random variables that have the same MGF which is MX(t) =MY (t), then X
and Y have the same distribution.

Proof
In this case, X and Y are nonnegative and integer-valued random variables. Let pk = P (X =
k) and qk = P (Y = k), where k=1,2,... Then MX(t) = E[etX ] and MY (t) = E[etY ]
Now, we can find

R(t) =MX [ln(t)] = E[eln(t
x)] = E(tx)

S(t) =MY [ln(t)] = E[eln(t
y)] = E(ty)

If MX(t) =MY (t) it follows that R(t) = S(t) and therefore

∞∑
k=1

tkpk = R(t) = S(t) =
∞∑
k=1

ttqk

In calculus, if two power series are equal, then their coefficients are also equal. Therefore,
pk = qk, k=1,2,... It follows that X and Y have the same distribution.

2.7.2 Independence of X and Y

Let X, and Y be independent random variables with MGFs MX(t), MY (t) respectively, then
the MGF of the sum of these two random variables is equal to the product of the individual
MGFs:

MX+Y (t) =MX(t)MY (t) (8)

Similarly, if apply property 2 above, for independent random variables X and Y , and con-
stants a and b, the MGF of aX + bY is MaX+bY (t) =MX(at)MY (bt)
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Proof

MX+Y = E[et(x+y] = E[etxety] = E[etx]E[ety]

because X and Y are independent

MX+Y =MX(t)MY (t)

These properties and theorems underpin the utility of MGFs in identifying the distributions,
calculating moments, and facilitating the analysis of random variables’ behavior.

2.8 Applications

1. Use these properties and the moment generating function of X ∼ N(µ, σ) to find the
moment generating function of Z ∼ N(0, 1) to find the moment generating function of
X ∼ N(µ, σ).

X ∼ N(µ, σ2), Z =
X − µ

σ
→ X = µ+ σZ ∼ N(0, 1)

MX(t) =Mµ+σZ(t) = E[et(µ+σZ)] = etµ · E[etσZ ] = etµ ·MZ(σt) = etµ+
1
2
t2σ2

2. Suppose X, Y are independent random variables. Find the distribution of X + Y , where
X ∼ N(µ1, σ

2
1), Y ∼ N(µ2, σ

2
2).

MX+Y (t) =MX(t) ·MY (t)

= etµ1+
1
2
t2σ2

1 · etµ2+
1
2
t2σ2

2

= et(µ1+µ2)+
1
2
t2(σ2

1+σ2
2)

Thus, X + Y ∼ N(µ1 + µ2,
√
σ2
1 + σ2

2).

2.9 MGFs for Different Distributions Summations:

2.9.1 MGFs for the sum of binomial distributions.

There are two independent binomial random variables, X and Y , with parameters n1, p and
n2, p respectively. Find the MGF of their sum, Z = X + Y :
The MGF of a binomial random variable X with parameters n, p is given by:

MX(t) = (1− p+ pet)n

For two independent binomial random variables X and Y , the MGF of their sum Z = X+Y
can be found by multiplying their MGFs due to the independence property:

MZ(t) =MX(t)×MY (t)

Substituting the formulas for MX(t) and MY (t):

MZ(t) = (1− p+ pet)n1 × (1− p+ pet)n2

MZ(t) = (1− p+ pet)n1+n2

This shows that Z is indeed a binomial random variable with parameters n1 + n2, p
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2.9.2 MGFs for the sum of Poisson distributions

Consider two independent Poisson random variables X and Y with parameters λ1 and λ2
respectively. The MGF of a Poisson random variable with parameter λ is given by:

MX(t) = eλ(e
t−1)

The MGF of the sum Z = X + Y for independent Poisson random variables is the product
of their individual MGFs:

MZ(t) =MX(t)×MY (t) = eλ1(et−1) × eλ2(et−1)

MZ(t) = e(λ1+λ2)(et−1)

Hence, the sum of two independent Poisson random variables is also a Poisson random
variable with parameter λ1 + λ2.

2.9.3 MGFs for the sum of Gamma distributions

Let X and Y be two independent gamma random variables with shape parameters α1, α2

and a common scale parameter β. The MGF of a gamma random variable is:

MX(t) =

(
1− t

β

)−α

The MGF of the sum Z = X + Y is given by:

MZ(t) =MX(t)×MY (t) =

(
1− t

β

)−α1

×
(
1− t

β

)−α2

MZ(t) =

(
1− t

β

)−(α1+α2)

The sum of two independent gamma random variables with the same scale parameter is a
gamma random variable with shape parameter α1 + α2 and the same scale parameter β.

2.9.4 MGFs for the sum of Normal distributions.

Suppose X and Y are two independent normal random variables with means µX , µY and
variances σ2

X , σ
2
Y respectively. The MGF of a normal random variable with mean µ and

variance σ2 is:
MX(t) = eµt+

1
2
σ2t2

The MGF of the sum Z = X + Y is the product of the MGFs of X and Y :

MZ(t) =MX(t)×MY (t) = eµX t+ 1
2
σ2
X t2 × eµY t+ 1

2
σ2
Y t2

MZ(t) = e(µX+µY )t+ 1
2
(σ2

X+σ2
Y )t2

Thus, the sum of two independent normal random variables is another normal random
variable with mean µX + µY and variance σ2

X + σ2
Y .
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3 Multivariate Case

In this section, we take look into the multivariate normal distribution and its moment-
generating function (MGF). We will present essential theorems and proofs that highlight the
distribution’s characteristics and its MGF.

3.1 Definition

Let X = (X1, X2, ..., Xn)
′, be a random vector and let t = (t1, t2, ..., tn)

′ be a vector of real
values. The joint moment generating function of X is defined as:

MX(t) = E(et
′X) = E(e

∑n
i=0 tixi) (9)

Compared to the univariate cases, the MGFs in multivariate have the same equation but the
power of exponential has a dot product of t’s transpose and X.

3.2 Joint MGF of Multinomial Distribution

Let X be a multinomial distribution which denoted as X ∼ M(n,p), where p is a column
vector contain (p1, ..., pr) The joint moment generating function of X is:

MX(t) = E[etX ] =
∑
x1

∑
x2

. . .
∑
xr

etX
n!

x1!x2! . . . xr!
px1
1 p

x2
2 . . . pxr

r

=
∑
x1

∑
x2

. . .
∑
xr

n!

x1!x2! . . . xr!
(p1e

t1)x1(p2e
t2)x2 . . . (pre

tr)xr

Using the multinomial theorem we get the joint moment generating function of the multi-
nomial distribution

MX(t) = (p1e
t1 + p2e

t2 + . . .+ pre
tr)n (10)

Example
Let’s show that U = X1 +X2 ∼ Binomial(n, p1 + p2) if X ∼ Multinoimal(n,p).

MU(t) =MX1,X2(t) = E
(
et·(X1+X2)

)
=

∑∑
· · ·

∑ n!

x1! · · ·xr!
(p1e

t)x1(p2e
t)x2 · · · pxr

r

= (p1e
t + p2e

t + . . .+ pr)
n

= (p1e
t + p2e

t + 1− p1 − p2)
n

= ((p1 + p2)e
t + 1− (p1 + p2))

n

Therefore, U = X1 +X2 ∼ Binomial(n, p1 + p2).
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3.3 Joint MGF of Multivariate Normal Distribution

Let X be a multivariate normal distribution which is denoted as X ∼ Nn(µ,Σ), where µ
is a mean vector and Σ is a covariance matrix. The moment generating function MX(t) is
given by:

MX(t) = E[et
′X] = E[et

′(X−µ)+t′µ]

Given that X is multivariate normal, (X−µ) is also multivariate normal with mean vector
0 and the same covariance matrix Σ. The quadratic term t′(X − µ) follows a normal
distribution with mean 0 and variance t′Σt. Thus, we can write:

MX(t) = et
′µE[e

1
2
t′Σt]

Because (X−µ) is centered, its expectation is just the exponential of its variance/2, leading
to:

MX(t) = et
′µ+ 1

2
t′Σt (11)

This is the moment-generating function of the multivariate normal distribution.

3.4 Theorems

There are four important theorems related to Multivariate MGFs. Let’s take a look at each
and see how to apply them.

3.4.1 Theorem 1 - Expected Value and Variance

Similarly to the univariate case, we can find the expected value and variance in multivariate
case of Xi by those steps:

Let Mi(t) =
∂MX(t)

∂ti
, Mii(t) =

∂2MX(t)

∂t2i
, and Mij(t) =

∂2MX(t)
∂ti∂tj

.

Then, E[Xi] =Mi(0), E[X
2
i ] =Mii(0), and E[XiXj] =Mij(0).

Corollary:
We can find the mean, variances, and covariances using the logarithm of the joint moment
generating function.
Let ψ(t) = logMX(t), ψi(t) =

∂
∂ti
ψX(t), ψii(t) =

∂2

∂t2i
ψX(t), and ψij(t) =

∂2

∂ti∂tj
ψX(t). Then

EXi = ψi(0), var(Xi) = ψii(0), and cov(Xi, Xj) = ψij(0).
We will take look examples in our later Application section.

3.4.2 Theorem 2 - The Marginal MGFs

LetX =

(
Y
Z

)
. The marginal moment generating function ofY (Z) is the moment generating

function of X ignoring the vector Z (Y). This is expressed as MY(u) = MX(u, 0) and

MZ(v) =MX(0,v), where t =

(
u
v

)
.
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Proof

MX(t) = E[et
′X] = E[eu

′Y+v′Z]

= E
[
e(

∑
uiYi+

∑
viZi)

]
Now set all vi’s = 0

= E[eu
′Y] =MY(u)

≡MX(u, 0)

3.4.3 Theorem 3 - Independence

Let X be (Y,Z)′. If Y and Z are independent then MX(t) =MY(u)MZ(v).

Proof
MX(t) = E(et

′X) = E(eu
′Y+v′Z)

Because of Y and Z are independent

= E(eu
′Y)E(ev

′Z) =MY(u) ·MZ(v)

3.4.4 Theorem 4 - The Joint MGFs

Let X = (X1, . . . , Xn)
′, t = (t1, . . . , tn)

′, andMX(t) be the joint moment generating function
of X. Then

(a) Let V =
∑n

i=1Xi and W =
∑n

i=1 aiXi + b.
Show that MV (r) =MX(r) and MW (r) = ebrMX(a1r, a2r, . . . , anr).

Proof:

MV (r) = E(erV ) = E
(
er

∑
Xi
)
= E

(
erX1+...+rXn

)
=MX(r), r = (r, ..., r)′

MW (r) = E(erW ) = E
(
er(

∑
aiXi+b)

)
= erbE

(
e
∑

airXi
)
= erbMX(a1r, . . . , anr)

Note:

MX(t) = E
(
et1X1+t2X2+...+tnXn

)
MW (r) = E(erW ) = E

(
er(

∑
aiXi+b)

)
= erbE

(
e
∑

airXi
)
= erbMX(a1r, . . . , anr)

(b) Let W =
∑n

i=1 aiXi + b and U =
∑n

i=1 ciXi + d. Then W and U have joint moment
generating function given by MW,U(r, s) = ebr+dsMX(a1r + c1s, . . . , anr + cns).

Proof:

MW,U(r, s) = E[erW+sU ]

= E[er(
∑

aiXi+b)+s(
∑

ciXi+d)]

= erb+sdE[e(ra1+sc1)X1+...+(ran+scn)Xn ]

= erb+sdMX(ra1 + sc1, . . . , ran + scn)
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3.4.5 Theorem 5 - The Distribution of AX + c

Let X ∼ N (µ,Σ) and let A be an m × n matrix and c an m × 1 vector. Then the random
vector Y = AX + c follows a multivariate normal distribution Y ∼ N (Aµ+ c, AΣA′).

Proof: The moment-generating function of Y can be found by considering the transfor-
mation of X and is given by:

MY (t) = E[et
′(AX+c)] = et

′cE[e(A
′t)′X ]

Since X is multivariate normal, we can use its MGF:

MX(A
′t) = exp

(
(A′t)′µ+

1

2
(A′t)′Σ(A′t)

)
Substituting back into the MGF of Y , we have:

MY (t) = et
′c exp

(
(A′t)′µ+

1

2
(A′t)′Σ(A′t)

)

MY (t) = exp

(
t′(Aµ+ c) +

1

2
t(AΣA′)t

)
This is the MGF of a multivariate normal distribution with mean Aµ + c and covariance
AΣA′, which completes the proof.

3.5 Applications

3.5.1 Marginal MGFs Examples

Consider the multinomial probability distribution X ∼M(n, p) with joint moment generat-
ing function

MX(t) = (p1e
t1 + p2e

t2 + . . .+ pre
tr)n

Find the marginal moment generating function of X1 by Theorem 2.

MX1(t1) = (p1e
t1 + p2 + p3 + . . .+ pr) = (p1e

t1 + 1− p1)
n

where t2 = . . . = tr = 0.
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3.5.2 Mean and Variance

Since we know the MX1(t1) = (p1e
t1 + 1 − p1)

n, let’s see how to use Theorem 1 to find
E(X1) and V ar(X1. First, let ψ(t) = ln(MX(t)) = ln(p1e

t1 + p2e
t2 + . . .+ pre

tr). Then:

ψ1(t) =
∂

∂t1
ψ(t) =

∂

∂t1

(
ln(p1e

t1 + . . .+ pre
tr)

)
=

np1e
t1

p1et1 + . . .+ pretr

At t = 0, E(X1) = ψ1(0) =
np1
1

= np1

ψ11(t) =
∂2

∂t21
ψ(t) =

∂

∂t1

(
np1e

t1

p1et1 + . . .+ pretr

)
= np1e

t1

[
p1e

t1 + . . .+ pre
tr − p1e

t1

(p1et1 + . . .+ pretr)2

]
At t = 0, var(X1) = ψ11(0) = np1 − np21 = np1(1− p1)

4 Conclusion

This paper presented a detailed investigation of the Moment Generating Functions (MGFs)
for key univariate and multivariate distributions: Binomial, Poisson, Gamma, Exponential,
Normal, both central and noncentral Chi-Square, Multinomial, and Multivariate Normal.
The exposition aimed to elucidate the concept and properties of MGFs, and demonstrate
their practical utility, especially in deriving mean and variance for diverse distributions.
It is hoped that this paper has broadened the reader’s understanding of MGFs and their
significance in statistical analysis. Thank you for reading my paper.
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